SpaceWatch.TV

JBookmarks

Add to: JBookmarks Add to: Facebook Add to: Webnews Add to: Buzka Add to: Windows Live Add to: Icio Add to: Ximmy Add to: Oneview Add to: Kledy.de Social Bookmarking Add to:  FAV!T Social Bookmarking Add to: Favoriten.de Add to: Seekxl Add to: BoniTrust Add to: Power-Oldie Add to: Bookmarks.cc Add to: Newskick Add to: Newsider Add to: Linksilo Add to: Readster Add to: Yigg Add to: Linkarena Add to: Digg Add to: Del.icoi.us Add to: Reddit Add to: Jumptags Add to: Upchuckr Add to: Simpy Add to: StumbleUpon Add to: Slashdot Add to: Netscape Add to: Furl Add to: Yahoo Add to: Blogmarks Add to: Diigo Add to: Technorati Add to: Newsvine Add to: Blinkbits Add to: Ma.Gnolia Add to: Smarking Add to: Netvouz Add to: Folkd Add to: Spurl Add to: Google Add to: Blinklist Information

Space News Reports

Weekly Space Hangout – Jan. 23, 2015: SpaceX, Rosetta, and Asteroid Updates!
Send to Email Address Your Name Your Email Address Cancel Post was not sent - check your email addresses! Email check failed, please try again Sorry, your blog cannot share posts by
Read More 34 Hits 0 Ratings
The Entire Milky Way Might Be a Huge Wormhole That’s Stable and Navigable
Artist rendering of a wormhole connecting two galaxies. Credit: Davide and Paolo Salucci. Our very own Milky Way could be home to a giant tunnel in spacetime. At least, that’s what the authors of a new study have proposed.
Read More 33 Hits 0 Ratings
Latest Research Reveals a Bizarre and Vibrant Rosetta’s Comet
A bleak yet beautiful boulder-strewn landscape on the smaller of the two lobes of Comet 67P/Churyumov-Gerasimenko taken from a distance of  just 5 miles (8 km). Credit: ESA/Rosetta/MPS for OSIRIS Team
Read More 34 Hits 0 Ratings
CATS Out of The Bag, Crawling Around ISS for Science Down Below
The Japanese robotic arm installs the CATS experiment on an external platform on Japan’s Kibo lab module. The SpaceX Dragon commercial cargo craft is seen at the right center of the image. Credit: NASA TV See way cool
Read More 40 Hits 0 Ratings
There’s a Crack Forming on Rosetta’s 67P. Is it Breaking Up?
A fissure spanning over 100 meters across the neck of Rosetta’s comet 67P raises the question of if, or when, the comet will breakup. The fissure is part of released studies by Rosetta scientists in the Journal Science
Read More 43 Hits 0 Ratings
See a Rare Comet-Moon Conjunction Tonight 24 January 2015, 00.27 Space
See a Rare Comet-Moon Conjunction Tonight
Tonight (Friday, Jan. 23rd) the moon will pass only about 1° (two moon diameters) south of Comet 15P/Finlay as seen from the Americas. This map shows the view from the upper Midwest at 7 p.m. Two 6th magnitude stars in
Read More 39 Hits 0 Ratings
Dawn Delivers New Image of Ceres 24 January 2015, 00.26 Space
Dawn Delivers New Image of Ceres
As NASA's Dawn spacecraft closes in on Ceres, new images show the dwarf planet at 27 pixels across, about three times better than the calibration images taken in early December. These are the first in a series of images that
Read More 37 Hits 0 Ratings
SPIDER Experiment Touches Down in Antarctica 24 January 2015, 00.26 Space
SPIDER Experiment Touches Down in Antarctica
Jeff Filippini, a postdoctoral scholar who worked on the SPIDER receiver team at Caltech, stands in front of the instrument as it was being readied for launch. Credit: Jeff Filippini › Full image and caption After spending
Read More 29 Hits 0 Ratings
Telescope To Seek Dust Where Other Earths May Lie
The NASA-funded Large Binocular Telescope Interferometer, or LBTI, has completed its first study of dust in the "habitable zone" around a star, opening a new door to finding planets like Earth. Dust is a natural byproduct of
Read More 27 Hits 0 Ratings
NASA, Microsoft Collaboration Will Allow Scientists to 'Work on Mars'
NASA and Microsoft have teamed up to develop software called OnSight, a new technology that will enable scientists to work virtually on Mars using wearable technology called Microsoft HoloLens. Developed by NASA's Jet
Read More 26 Hits 0 Ratings
Gullies on Vesta Suggest Past Water-Mobilized Flows
This image shows Cornelia Crater on the large asteroid Vesta. On the right is an inset image showing an example of curved gullies, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows.
Read More 36 Hits 0 Ratings
Five Things about NASA's SMAP 24 January 2015, 00.26 Space
Five Things about NASA's SMAP
Last week, NASA's Soil Moisture Active Passive satellite was transported across Vandenberg Air Force Base in California to Space Launch Complex 2, where it will be mated to a Delta II rocket for launch. Image credit:
Read More 33 Hits 0 Ratings
Enormous Structure at Milky Way Center --Aftermath of an Explosion 2 Million Years Ago Speeding Out at 2 Million MPH
The enormous structure was discovered five years ago as a gamma-ray glow on the sky in the direction of the galactic center. Astronomers have since observed the balloon-like features in X-rays and radio waves, but
Read More 19 Hits 0 Ratings
Three Extreme Objects Spotted in a Milky-Way Dwarf Galaxy
"This is a very important breakthrough for the team," says Professor Sergio Colafrancesco, DST/NRF SKA Research Chair in the Wits School of Physics. "It paves the way to study external galaxies with very high-E
Read More 45 Hits 0 Ratings
The Universe is a 'Complexity Machine' --"Intelligent Life and Technology May be Common in the Cosmos"
    Recent developments in science are beginning to suggest that the universe naturally produces complexity. The emergence of life in general and perhaps even rational life, with its associated
Read More 37 Hits 0 Ratings
Unusual Light Signal Hints at Distant Black Hole Merger
An artist's conception of a black hole binary in a heart of a quasar, with the data showing the periodic variability superposed. Credit: Santiago Lombeyda, Center for Data-Driven Discovery, Caltech. › Larger image The
Read More 114 Hits 0 Ratings
Volunteer 'Disk Detectives' Classify Possible Planetary Habitats
A NASA-sponsored website designed to crowdsource analysis of data from the agency's Wide-field Infrared Survey Explorer (WISE) mission has reached an impressive milestone. In less than a year, citizen scientists using
Read More 41 Hits 0 Ratings
NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones
Of the more than 1,000 verified planets found by NASA's Kepler, eight are less than twice Earth-size and in their stars' habitable zone. All eight orbit stars cooler and smaller than our sun. The search continues for
Read More 82 Hits 0 Ratings
Will the Real Monster Black Hole Please Stand Up?
A new high-energy X-ray image from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, has pinpointed the true monster of a galactic mashup. The image shows two colliding galaxies, collectively called Arp 299, located 134
Read More 43 Hits 0 Ratings
NASA Satellite Set to Get the Dirt on Soil Moisture
A new NASA satellite that will peer into the topmost layer of Earth's soils to measure the hidden waters that influence our weather and climate is in final preparations for a Jan. 29 dawn launch from California. The Soil
Read More 63 Hits 0 Ratings
NASA Robot Plunges Into Volcano to Explore Fissure
Volcanoes have always fascinated Carolyn Parcheta. She remembers a pivotal moment watching a researcher take a lava sample on a science TV program video in 6th grade. "I said to myself, I'm going to do that some day," said
Read More 59 Hits 0 Ratings
Neutron Star Sparks Brightest Flare Recorded from Milky Way's Supermassive Black Hole
The gas cloud, known as G2, was calculated to come close to the central black hole—known as Sagittarius A*, or Sgr A**--in spring 2014. Astronomers were expecting a huge increase in emissions from the region at
Read More 47 Hits 0 Ratings
Massive Eta Carinae's Great Eruptions Baffle Astronomers
A long-term study led by astronomers at NASA's Goddard Space Flight Center in Greenbelt, Maryland, used NASA satellites, ground-based telescopes and theoretical modeling to produce the most comprehensive picture of
Read More 44 Hits 0 Ratings
Kepler Space Telescope Hits 1,000 Planet Milestone --“We’re Closer than We’ve Ever Been to Finding Earth Twins"
"With each new discovery of these small, possibly rocky worlds, our confidence strengthens in the determination of the true frequency of planets like Earth," said co-author Doug Caldwell, SETI Institute Kepler
Read More 28 Hits 0 Ratings
The Dark Energy Survey Begins to Reveal Previously Unknown Trans-Neptunian Objects
An artist’s concept of a Trans-Neptunian Object (TNO). The distant sun is reduced to a bright star at a distance of over 3 billion miles. The Dark Energy Survey (DES) has now released discovery of more TNOs. (Illustration
Read More 133 Hits 0 Ratings
Disorderly Conduct: Andromeda’s Mature Stars Exhibit Surprising Behavior, Says Study
The Andromeda Galaxy is now believed to consist of multiple generations of stars, with younger stars behaving in a far more well-ordered fashion than their older counterparts. Image credit: Adam Evans To a distant
Read More 87 Hits 0 Ratings
NASA Exoplanet “Travel Posters” Aim To Help With Space Trip Planning
A NASA “travel poster” touting the benefits of exoplanet Kepler-16b, which has two Suns. Credit: NASA/JPL-Caltech What beauty, and what awesome travel slogans! NASA’s Jet Propulsion Laboratory has created a set of
Read More 65 Hits 0 Ratings
Robots Exploring Alien Volcanoes? NASA Lab Hopes To Get There One Day
Olympus Mons from orbit. Credit: NASA/JPL/Malin Space Science Systems We’ve seen volcanoes or geysers erupting on the moons of Io and Enceladus. Volcanic remnants remain on Mars and the Moon. But it’s tough for rovers to
Read More 61 Hits 0 Ratings
Gallery: Spacesuits Are Amazing Human-Protection Machines
NASA astronaut Greg Chamitoff during a 2011 spacewalk on the International Space Station. Reflected in his visor is NASA crewmate Mike Fincke. Both astronauts were mission specialists aboard shuttle mission STS-134. Credit:
Read More 111 Hits 0 Ratings
New 3-D-Printed Models of Eta Carinae Reveal Hidden Features
A collection of 3-D-printed models of a new supercomputer simulation tracking the interacting winds of Eta Carinae. In the foreground, the interaction region (left) is seen three months after the stars’ closest approach. At
Read More 67 Hits 0 Ratings
Hubble Discovers that Milky Way Core Drives Wind at 2 Million Miles Per Hour
Get larger image formats At a time when our earliest human ancestors had recently mastered walking upright, the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2
Read More 40 Hits 0 Ratings
Hubble's High-Definition Panoramic View of the Andromeda Galaxy
Get larger image formats The largest NASA Hubble Space Telescope image ever assembled, this sweeping view of a portion of the Andromeda galaxy (M31) is the sharpest large composite image ever taken of our galactic neighbor.
Read More 61 Hits 0 Ratings
Hubble Goes High Def to Revisit the Iconic 'Pillars of Creation'
Get larger image formats Although NASA's Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called "Pillars of Creation." The
Read More 50 Hits 0 Ratings
Image of the Day: A Colossal Galaxy Almost as Old as the Universe
Our Milky Way galaxy forms one star the mass of Earth’s own sun each year. Massive AzTEC-3, the second-most-distant one of its kind known to humanity, produces about five of our suns each Earth day, churning
Read More 90 Hits 0 Ratings
A Gorgeous Island Universe --How Our Milky Way Would Look from 50-Million Light Years
  The e gorgeous island universe spiral galaxy NGC 7331, about 50 million light-years distant in the northern constellation Pegasus is a visual analog to our own Milky Way. The galaxy was recognized
Read More 124 Hits 1 Rating

SpaceWatch.TV

 

Future News Reports

Obama's War Against US Energy Independence:  Give Away Oil Rich Alaskan Islands to Russia!
  By Joe Miller The Obama administration, despite the nation’s economic woes, effectively killed the job-producing Keystone Pipeline last month. The Arab Spring is turning the oil production of Libya and other Arab
Read More 2713 Hits 0 Ratings
OSBIT Power's MaXccess system completes successful offshore trials 08 April 2012, 02.33 Administrator Energy
OSBIT Power's MaXccess system completes successful offshore trials
OSBIT Power's MaXccess system completes successful offshore trials Visit http://www.osbitpower.com for further information OSBIT Power (OP), Siemens Wind Power and Statoil have successfully completed offshore
Read More 2454 Hits 0 Ratings
North America's EV charging infrastructure to get a boost 12 January 2012, 02.01 Administrator Energy
North America's EV charging infrastructure to get a boost
        North America’s EV charging infrastructure may soon see significant improvements, thanks to a recent agreement between Eaton Corporation and Coulomb Technologies. Under the deal, Eaton’s Level II and
Read More 2298 Hits 0 Ratings
Could The Gravitomagnetic Field Be The Ultimate Energy Source? 28 May 2011, 01.34 Administrator Energy
Could The Gravitomagnetic Field Be The Ultimate Energy Source?
      Have scientists already unknowingly discovered the source for all atomic energy reactions, and could the discovery of the gravitomagnetic field be the ultimate energy source?  What if our understandings on how
Read More 5204 Hits 1 Rating
Physicists urge caution over apparent speed of light violation 25 September 2011, 16.27 Administrator Energy
Physicists urge caution over apparent speed of light violation
Physicists wary of junking light speed limit yet Physicist Antonio Ereditato poses before presenting the result of an experiment, which found a subatomic particle, the neutrino, seemed to move faster than the speed of
Read More 3308 Hits 0 Ratings
STEORN ORBO  FREE ENERGY:  What's Next a Self Charging Unit for your Electric Car?
Steorn's Free Energy Orbo -- From Permanent Magnets to Solid State Systems   My associate, Hank Mills composed this for PESN, Saturday, February 12, 2011 6:17 Steorn is a small company based in Dublin, Ireland. For
Read More 5363 Hits 1 Rating
Cold Fusion, Releases Energy from Hydrogen's Gravitomagnetic Field 16 January 2011, 09.17 Administrator Energy
Cold Fusion, Releases Energy  from Hydrogen's Gravitomagnetic Field
Cold Fusion "In Bologna we did it" By Ilaria VENTURI, La Republica News, Bolona, Italy For the first time in Italy, in front of experts, the process was carried out using nickel and hydrogen. It 's the way to achieve
Read More 4063 Hits 0 Ratings
Abu Dhabi Media Zone to generate renewable energy through its façade
Eco Factor: Sustainable development to generate renewable solar energy. Bernard Tschumi Architects have re-imagined their master plan for the new Abu Dhabi Media Zone, by incorporating several environmentally-friendly
Read More 3005 Hits 1 Rating

FUTURE NEWS NETWORK


Change The World!


Latest Published Articles

Space

Station Astronauts Send Christmas Greetings from the International Space Station PDF Print E-mail

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA

There is a long tradition of Christmas greetings from spacefarers soaring around the High Frontier and this years is no expectation!

The Expedition 42 crew currently serving aboard the International Space Station has decorated the station for the Christmas 2014 holiday season and send their greetings to all the people of Earth.

“Merry Christmas from the International Space Station!” said astronauts Barry Wilmore and Terry Virts of NASA and Samantha Cristoforetti of ESA, who posed for the group shot above.

Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree. Credit: NASA/ESA

Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree. Credit: NASA/ESA

“It’s beginning to look like Christmas on the International Space Station,” said NASA in holiday blog update.

“The stockings are out, the tree is up and the station residents continue advanced space research to benefit life on Earth and in space.”

No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed. Credit: NASA/Terry Virts

No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed. Credit: NASA/Terry Virts

And here’s a special Christmas video greeting from Wilmore and Virts:

Video Caption: Aboard the International Space Station, Expedition 42 Commander Barry Wilmore and Flight Engineer Terry Virts of NASA offered their thoughts and best wishes to the world for the Christmas holiday during downlink messages from the orbital complex on Dec. 17. Wilmore has been aboard the research lab since late September and will remain in orbit until mid-March 2015. Virts arrived at the station in late November and will stay until mid-May 2015. Credit: NASA

Meanwhile the crew is still hard at work doing science and preparing for the next space station resupply mission launch by SpaceX from Cape Canaveral, Florida.

A SpaceX Falcon 9 rocket is now set to blastoff on Jan. 6, 2015 carrying the Dragon cargo freighter on the CRS-5 mission bound for the ISS.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the Falcon 9 went the full duration and cleared the path for the Jan. 6 liftoff attempt.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

Share
  Section:  Articles - File Under:  Space  |  
 
Elon Musk’s Hyperloop Might Become A Reality After All PDF Print E-mail

Concept art for the Hyperloop high-speed train. Credit: Reuters

Concept art for the Hyperloop high-speed train. Image Credit: Tesla Motors

Fans of Elon Musk and high-speed transit are sure to remember the Hyperloop. Back in 2013, Musk dropped the idea into the public mind with a paper that claimed that using the right technology, a high-speed train could make the trip from San Fransisco to Los Angeles in just 35 minutes.

However, Musk also indicated that he was too busy to build such a system, but that others were free to take a crack at it. And it seems that a small startup from El Segundo, California is prepared to do just that.

That company is JumpStartFund, a startup that combines elements of crowdfunding and crowd-sourcing to make innovation happen. Dirk Ahlborn, the CEO of JumpStartFund, believes they can build Musk’s vision of a solar-powered transit system that would transport people at up to speeds of 1280 km/h (800 mph).

Together with SpaceX, JumpStartFund has created a subsidiary called Hyperloop Transportation Technologies (HTT), Inc. to oversee all the necessary components to creating the system. This included bringing together 100 engineers from all over the country who work for such giants of industry as Boeing, NASA, Yahoo!, Airbus, SpaceX, and Salesforce.

Concept art of what a completed Hyperloop would look like amidst the countryside. Credit: HTT/JumpStartFund

Concept art of what a completed Hyperloop would look like amidst the countryside. Credit: HTT/JumpStartFund

Last week, these engineers came together for the first time to get the ball rolling, and what they came up with a 76-page report (entitled “Crowdstorm”) that spelled out exactly how they planned to proceed. By their own estimates, they believe they can complete the Hyperloop in just 10 years, and at a cost of $16 billion.

A price tag like that would be sure to scare most developers away. However, Ahlborn is undeterred and believes that all obstacles, financial or otherwise, can be overcome. As he professed in an interview with Wired this week: “I have almost no doubt that once we are finished, once we know how we are going to build and it makes economical sense, that we will get the funds.”

The HTT report also covered the basic design and engineering principles that would go into the building of the train, as Musk originally proposed it. Basically, this consists of pods cars that provide their own electricity through solar power, and which are accelerated through a combination of linear induction motors and low air pressure.

Much has been made of this latter aspect of the idea, and has often compared to the kinds of pneumatic tubes that used to send messages around office buildings in the mid-20th century. But of course, what is called for with the Hyperloop is bit more sophisticated.

Concept art showing different "classes" for travel. Credit: HTT

Concept art showing different “classes” for travel, which would include business class for those who can afford it. Credit: HTT/JumpStartFund

Basically, the Hyperloop will operate by providing each capsule with a soft air cushion to float on, avoiding direct contact with rails or the tube, while electromagnetic induction is used to speed up or slow the capsules down, depending on where they are in the transit system.

However, the HTT engineers indicated that such a system need not be limited to California. As it says in the report: “While it would of course be fantastic to have a Hyperloop between LA and SF as originally proposed, those aren’t the only two cities in the US and all over the world that would seriously benefit from the Hyperloop. Beyond the dramatic increase in speed and decrease in pollution, one of the key advantages the Hyperloop offers over existing designs for high-speed rail is the cost of construction and operations.”

The report also indicated the kind of price bracket they would be hoping to achieve. As it stands, HTT’s goal is “to keep the ticket price between LA and SF in the $20-$30 range,” with double that amount for return tickets. But with an overall price tag of $16 billion, the report also makes allowances for going higher: “[Our] current projected cost is closer to $16 billion,” they claim, “implying a need for a higher ticket price, unless the loop transports significantly more than 7.4 million annually, or the timeline for repayment is extended.”

In addition, the report also indicates that they are still relying heavily on Musk’s alpha document for much of their cost assessment. As a result, they can’t be specific on pricing or what kinds of revenues the Hyperloop can be expected to generate once its up and running.

The Hyperloop, as originally conceived within Musk's alpha document. Credit: Tesla Motors

The Hyperloop, as originally conceived within Musk’s alpha document. Credit: Tesla Motors

Also, there’s still plenty of logistical issues that need to be worked out, not to mention the hurdles of zoning, local politics and environmental assessments. Basically, HTT can look forward to countless challenges before they even begin to break ground. And since they are depending on crowdfunding to raise the necessary funds, it is not even certain whether or not they will be able to meet the burden of paying for it.

However, both Ahlborn and the HTT engineering team remain optimistic. Ahlborn believes the financial hurdles will be overcome, and if there was one thing that came through in the team’s report, it was the belief that something like the Hyperloop needs to happen in the near future. As the  team wrote in the opening section of “Crowdstorm”:

“It quickly becomes apparent just how dramatically the Hyperloop could change transportation, road congestion and minimize the carbon footprint globally. Even without naming any specific cities, it’s apparent that the Hyperloop would greatly increase the range of options available to those who want to continue working where they do, but don’t wish to live in the same city, or who want to live further away without an unrealistic commute time; solving some of the major housing issues some metropolitan areas are struggling with.”

Only time will tell if the Hyperloop will become the “fifth mode of transportation” (as Musk referred to it initially) or just a pipe-dream. But when it was first proposed, it was clear that what the Hyperloop really needed was someone who believed in it and enough money to get it off the ground. As of now, it has the former. One can only hope the rest works itself out with time.

Further Reading: JumpStartFund, SpaceX/Hyperloop, Crowdstorm

About 

Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!

Share
  Section:  Articles - File Under:  Space  |  
 
Solved: The Mystery of Earth’s Theta Aurora PDF Print E-mail
User Rating: / 3
PoorBest 

From the ground, aurora have mystified humans since we began to question the world. The space age revealed more mystery - the Theta Auroral Oval (inset) and the challenge of understanding the phenomena. (Photo Credit: NASA/APOD)

From the ground, aurora have mystified humans since we began to question the world. The space age revealed more mystery – the Theta Auroral Oval (inset) and the challenge of understanding the phenomena. (Photo Credit: NASA/APOD)

The mystery of the northern lights – aurora – spans time beyond history and to cultures of both the southern and northern hemispheres. The mystery involves the lights, fantastic patterns and mystical changes. Ancient men and women stood huddled under them wondering what it meant. Was it messages from the gods, the spirits of loved ones, warnings or messages to comfort their souls?

Aurora reside literally at the edge of space. While we know the basics and even more, we are still learning. A new published work has just added to our understanding by explaining how one type of aurora – the Theta Aurora – is created from the interaction of the charged particles, electric and magnetic fields surrounding the Earth. Their conclusions required the coordination of simultaneous observations of two missions.

The Theta Auroral Oval as observed by the NASA IMAGE FUV camera on September 15, 2005. (Credit: NASA/SWRI)

The Theta Auroral Oval as observed by the NASA IMAGE FUV camera on September 15, 2005 and anlayzed using Cluster data in the paper by Fear et al. (Credit: NASA/SWRI)

We were not aware of Thetas until the advent of the space age and our peering back at Earth. They cannot be recognized from the ground. The auroras that bystanders see from locales such as Norway or New Zealand are just arcs and subsets of the bigger picture which is the auroral ovals atop the polar regions of the Earth. Ground based all-sky cameras and polar orbiting probes had seen what were deemed “polar cap arcs.” However, it was a spacecraft Dynamics Explorer I (DE-1) that was the first to make global images of the auroral ovals and observed the first “transpolar arcs”, that is, the Theta aurora.

They are named Theta after the Greek letter that they resemble. Thetas are uncommon and do not persist long. Early on in the exploration of this phenomenon, researchers have been aware that they occur when the Sun’s magnetic field, called the Interplanetary Magnetic Field (IMF) turns northward. Most of the time the IMF in the vicinity of the Earth points south. It is a critical aspect of the Sun-Earth interaction. The southerly pointing field is able to dovetail readily with the normal direction of the Earth’s magnetic field. The northward IMF interacting with the Earth’s field is similar to two bar magnets turned head to head, repelling each other. When the IMF flips northward locally, a convolution takes place that will, at times, but not always, produce a Theta aurora.

A group of researchers led by Dr. Robert Fear from the Department of Physics & Astronomy, University of Leicester, through analysis of simultaneous spacecraft observations, has identified how the particles and fields interact to produce Theta aurora. Their study, “Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere” in the Journal Science (December 19, 2014, Vol 346) utilized a combination of data from ESA’s Cluster spacecraft mission and the IMAGE spacecraft of NASA. The specific event in the Earth’s magnetosphere on September 15, 2005 was observed simultaneously by the spacecraft of both missions.

Illustrations of the Cluster II spacecraft in orbit and formation around the Earth and the NASA IMAGE spacecraft vehicle design. The two mission's observations were combined to correlate numerous auroral and magnetospheric events. Cluster II remains in operation as of December 2014 (14 yr lifespan). (Credit: ESA, NASA)

Illustrations of the Cluster II spacecraft in orbit and formation around the Earth and the NASA IMAGE spacecraft vehicle design. The two mission’s observations were combined to correlate numerous auroral and magnetospheric events. Cluster II remains in operation as of December 2014 (14 yr lifespan). (Credit: ESA, NASA)

Due to the complexity of the Sun-Earth relationship involving neutral and charged particles and electric and magnetic fields, space scientists have long attempted to make simultaneous measurements with multiple spacecraft. ISEE-1, 2 and 3 were one early attempt. Another was the Dynamics Explorer 1 & 2 spacecraft. DE-2 was in a low orbit while DE-1 was in an elongated orbit taking it deeper into the magnetosphere. At times, the pair would align on the same magnetic field lines. The field lines are like rails that guide the charged particles from far out in the magneto-tail to all the way down to the upper atmosphere – the ionosphere. Placing two or more spacecraft on the same field lines presented the means of making coordinated observations of the same event. Dr. Fear and colleagues analyzed data when ESA’s Cluster resided in the southern lobe of the magnetotail and NASA’s IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft resided above the south polar region of the Earth.

Cluster is a set of four spacecraft, still in operation after 14 years. Together with IMAGE, five craft were observing the event. Fear, et al utilized ESA spacecraft Cluster 1 (of four) and NASA’s IMAGE. On that fateful day, the IMF turned north. As described in Dr. Fear’s paper, on that day, the north and south lobes of the magnetosphere were closed. The magnetic field lines of the lobes were separated from the Solar wind and IMF due to what is called magnetic reconnection. The following diagram shows how complex Earth’s magnetosphere is; with regions such as the bow shock, magnetopause, cusps, magnetotail, particle belts and the lobes.

Illustration of the Earth's magnetosphere showing it complexity. The Theta Aurora are now confidently linked to magnetic reconnection events in the lobes of the magnetotail. (Credit: NASA)

Illustration of the Earth’s magnetosphere showing it complexity. The Theta Aurora are now confidently linked to magnetic reconnection events in the lobes of the magnetotail. (Credit: NASA)

The science paper explains that what was previously observed by only lower altitude spacecraft was captured by Cluster within the magnetotail lobes. The southerly lobe’s plasma – ionized particles – was very energetic. The measurements revealed that the southern lobe of the magnetotail was acting as a bottle and the particles were bouncing between two magnetic mirrors, that is, the lobes were close due to reconnection. The particles were highly energetic.

The presence of what is called a double loss cone signature in the electron energy distribution was a clear indicator that the particles were trapped and oscillating between mirror points. The consequences for the Earth’s ionosphere was that highly energetic particles flooded down the field lines from the lobes and impacted the upper atmosphere transferring their energy and causing the magnificent light show that we know as the Northern Lights (or Southern) in the form of a Theta Auroral Oval. This strong evidence supports the theory that Theta aurora are produced by energized particles from within closed field lines and not by energetic particles directly from the Solar Wind that find a path into the magnetosphere and reach the upper atmosphere of the Earth.

A video of an observed major geomagnetic storm (July 15, 2000) taken by the Far Ultraviolet Imaging System (FUV) on IMAGE. IMAGE operated from 2000 to December 2005 when communications were lost. (Credit: NASA/SWRI) [click to view the animated gif]

A video of an observed major geomagnetic storm (July 15, 2000, southward IMF) taken by the Far Ultraviolet Imaging System (FUV) on the spacecraft IMAGE. IMAGE operated from 2000 until December 2005 when communications were inexplicably lost. (Credit: NASA/SWRI) [click to view the animated gif]

Without the coordination of the observations and the collective analysis, the Theta aurora phenomenon would continue to be debated. The analysis by Dr. Fear, while not definitive, is strong proof that Theta aurora are generated from particles trapped within closed field lines.

The analysis of the Cluster mission data as well as that of many other missions takes years. Years after observations are made researchers can achieve new understanding through study of arduous details or sometimes by a ha-ha moment. Aurora represent the signature of the interaction of two magnetic fields and two populations of particles – the Sun’s field and energetic particles streaming at millions of miles per hour from its surface reaching the Earth’s magnetic field. The Earth’s field is transformed by the interaction and receives energetic particles that it bottles up and energizes further. Ultimately, the Earth’s magnetic field directs some of these particles to the topside of our atmosphere. For thousands and likely tens of thousands of years, humans have questioned what it all means. Now another piece of the puzzle has been laid down with a good degree of certainty; one that explains the Theta aurora.

Reference:

Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere

Transpolar arc evolution and associated potential patterns

Transpolar aurora: time evolution, associated convection patterns, and a possible cause

Related articles at Universe Today:

Guide to Space –

Earth’s Magnetic Field,

Aurora Borealis

About 

Contributing writer Tim Reyes is a former NASA software engineer and analyst who has supported development of orbital and lander missions to the planet Mars since 1992. He has an M.S. in Space Plasma Physics from University of Alabama, Huntsville.

Share
  Section:  Articles - File Under:  Space  |  
 
Successful Engine Test Enables SpaceX Falcon 9 Soar to Space Station in Jan. 2015 PDF Print E-mail
User Rating: / 2
PoorBest 

 SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

KENNEDY SPACE CENTER, FL – To ensure the highest possibility of success for the launch of a critical resupply mission to the International Space Station (ISS), SpaceX has announced the successful completion of a second static fire test of the first stage propulsion system of the firms commercial Falcon 9 rocket on Dec. 19.

The launch of the Falcon 9 had been slated for Dec. 19, but NASA and SpaceX decided just 1 day before liftoff on Dec. 18 to postpone the launch of the CRS-5 resupply mission into the new year, when the first static fire test failed to run for its full duration of approximately three seconds.

“SpaceX completed a successful static fire test of the Falcon 9 rocket [on Dec. 19] in advance of the CRS-5 mission for NASA,” said SpaceX in a statement.

The second test was done because the first test of the Merlin 1D engines did not run for its full duration of about three seconds.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: NASA

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

“While the Dec. 17 static fire test accomplished nearly all of our goals, the test did not run the full duration, ”SpaceX spokesman John Taylor confirmed to Universe Today.

“The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

Both tests were conducted at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

“We opted to execute a second test,” noted SpaceX.

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on Dec. 19 on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct 28 from NASA’s Wallops Flight Facility in Virginia, officials are being prudently cautious to ensure that all measures are being carefully rechecked to maximize the possibilities of a launch success.

The new launch date for CRS-5 is now set for no earlier than Jan. 6, 2015

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now January 6 with January 7 as a backup,” said SpaceX.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

Share
  Section:  Articles - File Under:  Space  |  
 
Universe Today’s Top 10 Space Stories of 2014 PDF Print E-mail
User Rating: / 4
PoorBest 

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.

These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.

10. End of Venus Express

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau

Artist’s impression of Venus Express performing aerobreaking maneuvers in the planet’s atmosphere in June and July 2014. Credit: ESA–C. Carreau

This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.

9. Continued discoveries by Curiosity and Opportunity

1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.

8. Siding Spring at Mars and the level of study of the comet by other missions at Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.

7. Kepler K2

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.

6. MAVEN at Mars

An artist's conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center

An artist’s conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center

Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.

5. India’s MOM

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit ISRO

Artist’s impression of India’s Mars Orbiter Mission (MOM). Credit ISRO

India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.

4. Accidents by Virgin and Orbital

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.

3. SpaceX rocket landing attempts

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.

2. Orion flight

Orion Service Module fairing separation. Credit: NASA TV

Orion Service Module fairing separation. Credit: NASA TV

NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.

1. Rosetta

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth's crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth’s crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.

About 

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Share
  Section:  Articles - File Under:  Space  |  
 
The Top 101 Astronomical Events to Watch for in 2015 PDF Print E-mail
User Rating: / 1
PoorBest 

Credit:

Star trails over southwest London. Credit: Roger Hutchinson.

Phew! It’s here.

Now in its seventh year of compilation and the second year running on Universe Today, we’re proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your fridge or observatory wall. Not only is this the yearly article that we jokingly refer to as the “blog post it takes us six months to write,” but we like to think of it as unique, a mix of the mandatory, the predictable and the bizarre. It’s not a 10 ten listicle, and not a full-fledged almanac, but something in between.     

A rundown of astronomy for 2015: There’s lots of astronomical action to look forward to in the coming year. 2015 features the minimum number of eclipses that can occur, two lunars and two solars. The Moon also reaches its minimum standstill this coming year, as its orbit runs shallow relative to the celestial equator. The Moon will also occult all naked eye planets except Saturn in 2015, and will occult the bright star Aldebaran 13 times — once during every lunation in 2015. And speaking of Saturn, the rings of the distant planet are tilted an average of 24 degrees and opening to our line of sight in 2015 as they head towards their widest in 2018.

Finally, solar activity is trending downwards in 2015 after passing the sputtering 2014 maximum for solar cycle #24 as we now head towards a solar minimum around 2020.

Our best bets: Don’t miss these fine celestial spectacles coming to a sky near YOU next year:

– The two final total lunar eclipses in the ongoing tetrad, one on April 4th and September 28th.

– The only total solar eclipse of 2015 on March 20th, crossing the high Arctic.

– A fine dusk pairing of the bright planets Jupiter and Venus on July 1st.

– Possible wildcard outbursts from the Alpha Monocerotid and Taurid meteors, and a favorable New Moon near the peak of the August Perseids.

– Possible naked eye appearances by comet Q2 Lovejoy opening 2015 and comet US10 Catalina later in the year.

– The occultation of a naked eye star for Miami by an asteroid on September 3rd.

– A series of fine occultations by the Moon of bright star Aldebaran worldwide.

The rules: The comprehensive list that follows has been lovingly distilled down to the top 101 astronomical events for 2015 worldwide. Some, such as lunar eclipses, are visible to a wide swath of humanity, while others, such as many of the asteroid occultations or the sole total solar eclipse of 2015 happen over remote locales. We whittled the list down to a “Top 101” using the following criterion:

Meteor showers: Must have a predicted ZHR  greater than 10.

Conjunctions: Must be closer than one degree.

Asteroid occultations: Must have a probability ranking better than 90 and occult a star brighter than magnitude +8.

Comets: Must reach a predicted brightness greater than magnitude +10. But remember: comets don’t always read prognostications such as this, and may over or under perform at whim… and the next big one could come by at any time!

Times quoted are geocentric unless otherwise noted, and are quoted in Universal Time in a 24- hour clock format.

These events are meant to merely whet the appetite. Expect ‘em to be expounded on fully by Universe Today as they approach. We linked to the events listed where possible, and provided a handy list of resources that we routinely consult at the end of the article.

Got it? Good… then without further fanfare, here’s the top 101 astronomical events for 2015 in chronological order:

The path of Comet Q2 Lovejoy From January 1st to January 31st.

The path of Comet Q2 Lovejoy from January 1st to January 31st. Created using Starry Night Education software.

January

01- Comet C/2012 Q2 Lovejoy may reach naked eye visibility.

04- The Quadrantid meteors peak at 02:00 UT, favoring northern Europe with an expected ZHR of 120.

04- The Earth reaches perihelion at ~8:00 UT.

14- Mercury reaches greatest evening elongation 18.9 degrees east of the Sun at ~16:00 UT.

17- The moons Io and Europa cast a double shadow on Jupiter from 3:53 to 4:58 UT.

20- Mars passes 0.2 degrees from Neptune at ~20:00 UT.

24- A triple shadow transit of Jupiter’s moons occurs from 6:26 to 6:54 UT.

29- The Moon occults Aldebaran at ~17:31 UT for the Arctic, marking the first of 13 occultations of the star by the Moon in 2015.

The view at 6:40 UT.

The view at 6:40 UT on January 24th, as 3 of Jupiter’s moons cast shadows on to the Jovian cloud tops simultaneously. Created using Starry Night Education software.

February

01- Venus passes 0.8 degrees south of Neptune at ~17:00 UT.

05- Earth crosses through Jupiter’s equatorial plane, marking the middle of occultation and eclipse season for the Galilean moons.

06- Jupiter reaches opposition at ~18:00 UT.

18- A “Black Moon” occurs, in the sense of the third New Moon in a season with four.

22- Venus passes 0.4 degrees south of Mars at 5:00 UT.

24- Mercury reaches greatest morning elongation at 26.7 degrees west of the Sun at 19:00 UT.

25- The Moon occults Aldebaran for northern Europe at 23:26 UT.

Credit: Eclipse-Maps

The path of the only total solar eclipse of 2015, occurring on March 20th. Credit: Michael Zeiler/Eclipse-Maps.

March

01- Geostationary satellite & Solar Dynamics Observatory eclipse season begins on the weeks leading up to the March Equinox.

04- Venus passes 0.1 degrees north of Uranus at ~18:00 UT. This is the closest planet-planet conjunction of 2015.

05- A Minimoon occurs, marking the most distant Full Moon of 2015 at 18:07 UT, just 10 hours from apogee.

11- Mars passes 0.3 degrees north of Uranus at ~16:00 UT.

20- A total solar eclipse occurs over the Arctic centered on 9:47 UT.

20- The March northward equinox occurs at 16:57 UT.

21- The Moon occults Mars for South America at ~22:14 UT.

25- The Moon occults Aldebaran for northwestern North America at ~7:17 UT.

Stellarium

Neith lives… the close passage of Uranus near Venus on March 4th. Credit: Stellarium.

April

04- A total lunar eclipse occurs, centered on 12:01 UT and visible from eastern Asia, the Pacific and the Americas.

08- Mercury passes 0.5 degrees from Uranus at ~11:00 UT.

21- The Moon occults Aldebaran for northern Asia at ~16:57 UT.

22- The Lyrid meteors peak at 24:00 UT, favoring northern Europe with a ZHR of 18.

May

05- The Eta Aquarid meteors peak (time variable), with an estimated ZHR of 55.

07- Mercury reaches greatest evening elongation at 21.2 degrees east of the Sun at 4:00 UT.

19- The Moon occults Aldebaran for northern North America at ~2:53 UT .

20- Comet C/2014 Q1 PanSTARRS may reach binocular visibility.

20- Io and Ganymede both cast shadows on Jupiter from 22:04 to 22:33 UT.

21- Callisto and Europa both cast shadows on Jupiter from 11:26 to 11:59 UT.

23- Saturn reaches opposition at ~1:00 UT.

28- Ganymede and Io both cast shadows on Jupiter from 00:01 to 2:18 UT.

30- Comet 19P/Borrelly may reach binocular visibility.

June

01- The International Space Station reaches full illumination as the June solstice nears, resulting in multiple nightly passes favoring  northern hemisphere observers.

04- Io and Ganymede both cast shadows on Jupiter from 2:54 to 4:13 UT.

05- Venus reaches greatest eastern (dusk) elongation for 2015, 45 degrees from the Sun at 16:00 UT.

10- Asteroid 424 Gratia occults a +6.1 magnitude star at ~15:10 UT for northwestern Australia.

15- The Moon occults Mercury for the South Indian Ocean at ~2:26 UT.

15- Moon occults Aldebaran in the daytime for the high Arctic at ~11:33 UT.

16- Comet C/2014 Q1 PanSTARRS may reach naked eye visibility.

21- The June northward solstice occurs at 10:51 UT.

24- Mercury reaches greatest (morning) elongation at 22.5 degrees west of the Sun at 17:00 UT.

Stellarium

Venus and Jupiter pair together low in the west on July 1st. Credit: Stellarium.

July

01- Venus passes 0.4 degrees from Jupiter at 9:00 UT, marking the closest conjunction of two naked eye planets for 2015.

02- Comet C/2013 US10 Catalina may reach binocular visibility.

06- Earth reaches aphelion at 13:00 UT.

06- Pluto reaches opposition at 15:00 UT, just a week prior to New Horizons’ historic flyby of the distant world.

12- The Moon occults Aldebaran for northeastern Asia ~18:17 UT.

19- The Moon occults Venus for the South Pacific at ~1:07 UT.

25- Asteroid 49 Pales occults a +6.6 magnitude star at 10:55 UT for Mexico.

28- The Delta Aquarids peak (time variable) with a predicted ZHR of 16.

31- A “Blue Moon” occurs, in the sense of the second Full Moon in a given month.

Credit:

The light curve of comet C/2013 US10 Catalina through its peak in 2015. Credit: Seiichi Yoshida’s Weekly Information About Bright Comets.

August

07- Mercury, Jupiter and Regulus pass within a degree of each other over the next few mornings.

08- The Moon occults Aldebaran for central Asia at ~23:45 UT.

13- The Perseid meteors peak from 06:30 to 09:00 UT, with a maximum predicted ZHR of 100 favoring North America.

19- Mars crosses the Beehive Cluster M44.

28- Asteroid 16 Psyche occults a +6.4 magnitude star at ~9:49 UT for Bolivia and Peru.

29- Supermoon 1 of 3 for 2015: The Moon reaches Full at 18:38 UT, 20 hours from Full.

Lunar eclipse

The path of the Moon through the Earth’s shadow on September 28th. Credit: Fred Espenak/NASA/GSFC

September

01- Neptune reaches opposition at ~3:00 UT.

03- Asteroid 112 Iphigenia occults a +3rd magnitude star for Mexico and Miami at ~9:20 UT. This is the brightest star occulted by an asteroid in 2015.

02- Geostationary satellite and SDO eclipse season begins as we approach the September equinox.

04- Mercury reaches its greatest elongation for 2015, at 27 degrees east of the Sun at 8:00 UT in the dusk skies.

05- The Moon occults Aldebaran for northeastern North America at ~5:38 UT.

13- “Shallow point” (also known as the minor lunar standstill) occurs over the next lunation, as the Moon’s orbit reaches a shallow minimum of 18.1 degrees inclination with respect to the celestial equator… the path of the Moon now begins to widen towards 2025.

13- A partial solar eclipse occurs, centered on 6:55 UT crossing Africa and the Indian Ocean.

23- The September southward equinox occurs at 2:29 UT.

25- Mars passes 0.8 degrees from Regulus at ~4:00 UT.

28- A total lunar eclipse occurs centered on 2:48 UT, visible from the Pacific, the Americas and eastern Europe.

28- Supermoon 2 of 3 for 2015: The Moon reaches Full at 2:52 UT, approximately an hour from Full. This marks the closest Full Moon of the year.

Credit

The path of the September 3rd occultation of a +3rd magnitude star by an asteroid over central Mexico and the Florida Keys. Credit: IOTA/Steve Preston.

October

01- Comet C/2013 US10 Catalina may reach naked eye visibility.

02- The Moon occults Aldebaran for the northern Pacific at 13:14 UT.

02- Io and Callisto both cast shadows on Jupiter from 10:26-11:35 UT.

08- The Moon occults Venus for Australia at ~20:32 UT.

11- The Moon occults Mercury for Chile at ~12:00 UT.

12- Uranus reaches opposition at ~3:00 UT.

16- Mercury reaches greatest elongation (morning) 18.1 degrees west of the Sun at 10:00 UT.

17- Mars passes 0.4 degrees from Jupiter at 22:00 UT.

18- Io and Ganymede both cast shadows on Jupiter from 8:45 to 10:10 UT.

21- The Orionid meteors peak (time variable) with a projected ZHR of 15.

25- Venus passes 1 degree from Jupiter ~19:00 UT.

25- Io and Ganymede both cast shadows on Jupiter from 10:37 to 12:51 UT.

27- Supermoon 3 of 3 for 2015: The Moon reaches Full at 12:06 UT, 23 hours from Full.

29- The Moon occults Aldebaran for Europe at ~23:07 UT.

Credit

The Moon occults Aldebaran: the visibility footprint for North America. The dashed line denotes the area in which the event occurs during the daytime. Credit: Occult 4.1.0.11.

November

01- Io and Ganymede both cast shadows on Jupiter from 15:36 to 15:47 UT.

02- Venus passes 0.7 degrees south of Mars at 00:30 UT.

12- Will the 7 year “Taurid fireball meteor shower” produce?

18- The Leonid meteor shower peaks at 04:00 UT, with an estimated ZHR of 15 favoring Europe.

22- Are we in for a once per decade Alpha Monocerotids outburst? The 2015 peak arrives at 4:25 UT, favoring Europe… with a max ZHR = 400+ possible.

26- The Moon occults Aldebaran for North America at ~9:56 UT.

29- Comet C/2013 X1 PanSTARRS may reach binocular visibility.

Occultation

The daytime occultation of Venus by the Moon over North America on December 7th. Credit: Occult 4.1.0.11.

December

01- The International Space Station reaches full illumination as the December solstice nears, resulting in multiple nightly passes favoring the  southern hemisphere.

04- Mercury occults the +3.3 magnitude star Theta Ophiuchi for South Africa at 16:16 UT prior to dusk.

06- The Moon occults Mars for central Africa at ~2:42 UT.

07- The Moon occults Venus in the daytime for North America at ~16:55 UT.

14- The Geminid meteor shower peaks at 18:00 UT, with a ZHR=120 favoring NE Asia.

21- The December southward solstice occurs at 23:03 UT.

23- The Ursid meteor shower peaks at 2:30 UT with a ZHR variable from 10-50 favoring Europe and the Middle East.

23- The Moon occults Aldebaran for Europe and central Asia at ~19:32 UT.

29- Mercury reaches greatest evening elongation at 19.7 degrees east of the Sun at 00:01 UT.

Didn’t see your favorite event on the list? Let us know, and be sure to send in any images of these fine events to Universe Today’s Flickr forum.

Enjoy another exciting year of space and astronomy… we’ll be expounding on these events and more as 2015 unfolds.

Sources:

Occult 4.0

-Kevin McGill’s outstanding astronomical simulations.

-Greatest Elongations of Mercury and Venus.

-Stellarium

-Starry Night Pro

-Orbitron

-Steve Preston’s asteroid occultation predictions for 2015.

-The USNO forecast of phenomena for 2015.

-Seiichi Yoshida’s Weekly Information About Bright Comets.

-Fred Espenak’s NASA Eclipse web page.

-The American Meteor Society’s 2015 predictions.

-The International Meteor Organization’s 2015 page.

-Fourmilab’s lunar perigee and apogee calculator.

About 

David Dickinson is an Earth science teacher, freelance science writer, retired USAF veteran & backyard astronomer. He currently writes and ponders the universe from Tampa Bay, Florida.

Share
  Section:  Articles - File Under:  Space  |  
 
Horsehead of a Different Color PDF Print E-mail
User Rating: / 2
PoorBest 

Horsehead Nebula Disappears in Infrared Light The famous Horsehead nebula of visible-light images (inset) looks quite different when viewed in infrared light, as seen in this newly released image from NASA's Spitzer Space Telescope. Image credit: NASA/JPL-Caltech/ESO
› Full image and caption

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance on the far right side of the image, but is almost unrecognizable in this infrared view. In visible-light images, the nebula has a distinctively dark and dusty horse-shaped silhouette, but when viewed in infrared light, dust becomes transparent and the nebula appears as a wispy arc.

The Horsehead is only one small feature in the Orion Molecular Cloud Complex, dominated in the center of this view by the brilliant Flame nebula (NGC 2024). The smaller, glowing cavity falling between the Flame nebula and the Horsehead is called NGC 2023. These regions are about 1,200 light-years away.

The two carved-out cavities of the Flame nebula and NGC 2023 were created by the destructive glare of recently formed massive stars within their confines. They can be seen tracing a spine of glowing dust that runs through the image.

The Flame nebula sits adjacent to the star Alnitak, the easternmost star in Orion's belt, seen here as the bright blue dot near the top of the nebula.

In this infrared image from Spitzer, blue represents light emitted at a wavelength of 3.6-microns, and cyan (blue-green) represents 4.5-microns, both of which come mainly from hot stars. Green represents 8-micron light and red represents 24-micron light. Relatively cooler objects, such as the dust of the nebulae, appear green and red. Some regions along the top and bottom of the image extending beyond Spitzer's observations were filled in using data from NASA's Wide-field Infrared Survey Explorer, or WISE, which covered similar wavelengths across the whole sky.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit:

http://spitzer.caltech.edu

http://www.nasa.gov/spitzer

Media Contact

Whitney Clavin
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-4673
This e-mail address is being protected from spambots. You need JavaScript enabled to view it

2014-438

Share
  Section:  Articles - File Under:  Space  |  
 
Gecko Grippers Get a Microgravity Test Flight PDF Print E-mail
User Rating: / 1
PoorBest 

This is an image of a gecko foot. This is an image of a gecko foot. Researchers at NASA's Jet Propulsion Laboratory have developed a gripping system based on the way that gecko feet are able to stick to surfaces. Just as a gecko's foot has tiny adhesive hairs, the JPL devices have small structures that work in similar ways. Image credit: Wikimedia Commons
› Larger image

There are no garbage trucks equipped to leave the atmosphere and pick up debris floating around the Earth. But what if we could send a robot to do the job?

Scientists at NASA's Jet Propulsion Laboratory in Pasadena, California, are working on adhesive gripping tools that could grapple objects such as orbital debris or defunct satellites that would otherwise be hard to handle.

The gecko gripper project was selected for a test flight through the Flight Opportunities Program of NASA's Space Technology Mission Directorate. As a test, researchers used the grippers in brief periods of weightlessness aboard NASA's C-9B parabolic flight aircraft in August.

"Orbital debris is a serious risk to spacecraft, including the International Space Station," said Aaron Parness, a JPL robotics researcher who is the principal investigator for the grippers. "This is definitely a problem we're going to have to deal with. Our system might one day contribute to a solution."

The gripping system developed by Parness and colleagues was inspired by geckos, lizards that cling to walls with ease. Geckos' feet have branching arrays of tiny hairs, the smallest of which are hundreds of times thinner than a human hair. This system of hairs can conform to a rough surface without a lot of force. Although researchers cannot make a perfect replica of the gecko foot, they have put "hair" structures on the adhesive pads of the grippers.

The synthetic hairs, also called stalks, are wedge-shaped and have a slanted, mushroom-shaped cap. When the gripping pad lightly touches part of an object, only the very tips of the hairs make contact with that surface.

"The stickiness of the grippers can be turned on and off, by changing the direction in which you pull the hairs," Parness said.

To get the gripper to stick to a surface, force is applied to the adhesive pad material in a manner that makes the hairs bend. This increases the real area of contact between the hairs and the surface, which corresponds to greater adhesion. When the force is relaxed and the hairs go back to being upright, this process turns off the stickiness.

A phenomenon called van der Waals forces, named for Nobel Prize-winning physicist Johannes Diderik van der Waals, explains the non-permanent stickiness of the grippers, as well as gecko feet. These temporary adhesive forces happen because electrons orbiting the nuclei of atoms are not evenly spaced, creating a slight electrical charge. Such forces persist even in extreme temperature, pressure and radiation conditions.

"The reliability of van der Waals forces, even in severe environments, makes them particularly useful for space applications," Parness said.

"The system could grapple objects in space that are spinning or tumbling, and would otherwise be hard to target," he said.

In the recent tests, the grippers were able to grapple a 20-pound cube as it floated. The grippers also were able to grapple a researcher wearing a vest made of spacecraft material panels, representing a 250-pound "object." Members of the research team held the device with adhesive pads during the test, but the eventual idea is to integrate the grippers into a robotic arm or leg.

In total, the grippers have been tested on more than 30 spacecraft surfaces at JPL. They also have been tested successfully in a JPL thermal vacuum chamber, with total vacuum conditions and temperatures of minus 76 degrees Fahrenheit (minus 60 degrees Celsius) to simulate the conditions of space. While Parness was in graduate school at Stanford University in Palo Alto, California, the grippers were tested separately in more than 30,000 cycles of "on" and "off," with the adhesive staying strong. Several prototypes have since been designed.

There are more than 21,000 pieces of orbital debris larger than 3.9 inches (10 centimeters) in Earth's orbit. The U.S. Space Surveillance Network routinely tracks these objects. In 2009, an accidental collision occurred between an operational communications satellite and a large piece of debris, destroying the satellite.

Besides grappling orbital debris, the grippers could help inspect spacecraft or assist small satellites in docking to the International Space Station. The grippers are another example of how technology drives exploration.

The California Institute of Technology manages JPL for NASA.

Media Contact

Elizabeth Landau
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6425
This e-mail address is being protected from spambots. You need JavaScript enabled to view it

2014-439

Share
  Section:  Articles - File Under:  Space  |  
 
NASA's Spaceborne Carbon Counter Maps New Details PDF Print E-mail

The first global maps of atmospheric carbon dioxide from NASA's new Orbiting Carbon Observatory-2 mission demonstrate its performance and promise, showing elevated carbon dioxide concentrations across the Southern Hemisphere from springtime biomass burning.

At a media briefing today at the American Geophysical Union meeting in San Francisco, scientists from NASA's Jet Propulsion Laboratory, Pasadena, California; Colorado State University (CSU), Fort Collins; and the California Institute of Technology, Pasadena, presented the maps of carbon dioxide and a related phenomenon known as solar-induced chlorophyll fluorescence and discussed their potential implications.

A global map covering Oct. 1 through Nov. 17 shows elevated carbon dioxide concentrations in the atmosphere above northern Australia, southern Africa and eastern Brazil.

"Preliminary analysis shows these signals are largely driven by the seasonal burning of savannas and forests," said OCO-2 Deputy Project Scientist Annmarie Eldering, of JPL. The team is comparing these measurements with data from other satellites to clarify how much of the observed concentration is likely due to biomass burning.

The time period covered by the new maps is spring in the Southern Hemisphere, when agricultural fires and land clearing are widespread. The impact of these activities on global carbon dioxide has not been well quantified. As OCO-2 acquires more data, Eldering said, its Southern Hemisphere measurements could lead to an improved understanding of the relative importance in these regions of photosynthesis in tropical plants, which removes carbon dioxide from the atmosphere, and biomass burning, which releases carbon dioxide to the atmosphere.

The early OCO-2 data hint at some potential surprises to come. "The agreement between OCO-2 and models based on existing carbon dioxide data is remarkably good, but there are some interesting differences," said Christopher O'Dell, an assistant professor at CSU and member of OCO-2's science team. "Some of the differences may be due to systematic errors in our measurements, and we are currently in the process of nailing these down. But some of the differences are likely due to gaps in our current knowledge of carbon sources in certain regions -- gaps that OCO-2 will help fill in."

Carbon dioxide in the atmosphere has no distinguishing features to show what its source was. Elevated carbon dioxide over a region could have a natural cause -- for example, a drought that reduces plant growth -- or a human cause. At today's briefing, JPL scientist Christian Frankenberg introduced a map using a new type of data analysis from OCO-2 that can help scientists distinguish the gas's natural sources.

Through photosynthesis, plants remove carbon dioxide from the air and use sunlight to synthesize the carbon into food. Plants end up re-emitting about one percent of the sunlight at longer wavelengths. Using one of OCO-2's three spectrometer instruments, scientists can measure the re-emitted light, known as solar-induced chlorophyll fluorescence (SIF). This measurement complements OCO-2's carbon dioxide data with information on when and where plants are drawing carbon from the atmosphere.

"Where OCO-2 really excels is the sheer amount of data being collected within a day, about one million measurements across a narrow swath," Frankenberg said. "For fluorescence, this enables us, for the first time, to look at features on the five- to 10-kilometer scale on a daily basis." SIF can be measured even through moderately thick clouds, so it will be especially useful in understanding regions like the Amazon where cloud cover thwarts most spaceborne observations.

The changes in atmospheric carbon dioxide that OCO-2 seeks to measure are so small that the mission must take unusual precautions to ensure the instrument is free of errors. For that reason, the spacecraft was designed so that it can make an extra maneuver. In addition to gathering a straight line of data like a lawnmower swath, the instrument can point at a single target on the ground for a total of seven minutes as it passes overhead. That requires the spacecraft to turn sideways and make a half cartwheel to keep the target in its sights.

The targets OCO-2 uses are stations in the Total Carbon Column Observing Network (TCCON), a collaborative effort of multiple international institutions. TCCON has been collecting carbon dioxide data for about five years, and its measurements are fully calibrated and extremely accurate. At the same time that OCO-2 targets a TCCON site, a ground-based instrument at the site makes the same measurement. The extent to which the two measurements agree indicates how well calibrated the OCO-2 sensors are.

Additional maps released today showed the results of these targeting maneuvers over two TCCON sites in California and one in Australia. "Early results are very promising," said Paul Wennberg, a professor at Caltech and head of the TCCON network. "Over the next few months, the team will refine the OCO-2 data, and we anticipate that these comparisons will continue to improve."

To learn more about OCO-2, visit:

http://oco2.jpl.nasa.gov/

Caltech manages JPL for NASA.

NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA's Earth science activities this year, see:

http://www.nasa.gov/earthrightnow

Media Contact

Alan Buis
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0474
This e-mail address is being protected from spambots. You need JavaScript enabled to view it

Written by Carol Rasmussen
NASA Earth Science News Team

2014-435

Share
  Section:  Articles - File Under:  Space  |  
 
«StartPrev12345678910NextEnd»

Page 5 of 190
FNN Home Space
English (United Kingdom)
SpaceX Aims for Mars with Reusable Rockets, Spaceships:     LOS ANGELES — As SpaceX's Dragon capsule descended toward Earth, it was clear this landing was going to be different than previous ones. Instead of falling toward the ocean...
Deluxe News Pro - Copyright 2009,2010 Monev Software LLC

ERS Broadcast Networks

ERS Broadcast Networks - Links

 403 Forbidden

Forbidden

You don't have permission to access /components/com_bzgf/tent.php on this server.